

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: PULSE & DIGITAL CIRCUITS (16EC410) Course & Branch: B.Tech – ECE

Year & Sem: II-B.Tech & II-Sem **Regulation:** R16

UNIT-I

LINEAR AND NON LINEAR WAVE SHAPING

1. (a)Show that a high pass circuit with a small time constant acts as differentiator	[6M]	
(b) A 10v step is switvhed on to a $50k\Omega$ resistor in series with a 500pf capacitor.calcu	late the rise	
time of the capacitor voltage, the time for the capacitor to charge 63.2% of its maxi	mum	
voltage, and the time for the capacitor to be completely charged	[6M]	
2. (a)Design high pass RC circuit for sinsusoidal input.	[6M]	
(b)Define clamper. With the help of neat circuit diagrams and output waveforms, Explain the		
working of positive peak and negative peak clamping circuits	[6M]	
3. Derive an expression for the output voltage levels under steady state conditions of a high pass		
circuit excited by a pulse input	[12M]	
4. Describe about attenuators and derive the condition for perfect compensation of an attenuator		
5. a) Prove that a low pass circuit acts as an integrator.	[6M]	
b)Design high pass RC circuit for sinsusoidal input	[6M]	
6 a) Discuss the function of series diode and shunt diode clipping circuits? How can the clipping		
level shifted to reference voltage? Explain?	[6M]	
b) A pulse generator with an output resistance $R_s=500\Omega$ is connected to an oscilloscope with an		
Input capacitance of $C_i = 30pf$ determine the fastest rise time that can be displayed.	[6M]	
7. Discuss about attenuators and derive the condition for perfect compensation of an		
attenuator	[12M]	
8. a) With the help of a neat circuit diagram, explain the working of a two-level diode clipper. [6M]		
b)State and prove clamping circuit theorem.	[6M]	
9. a) write about synchronized clamping? Draw the circuit and explain its operation.	[6M]	
b) Discuss the effect of diode characteristics on clamping circuits	[6M]	
10. Classify different types of clipper circuits. Give their circuit and explain their operation. [12M]		

<u>UNIT-II</u>

SWITCHING CHARACTERISTICS AND MULTIVIBRATORS

1. a)Elaborate about piece-wise linear approximation for a semiconductor diode characteristics	s. [6M]	
b) Explain the working of transistor as a switch and draw the output characteristics	[6M]	
2. a) Briefly explain the design of transistor switch.	[6M]	
b) write about the storage and transition times of the diode as a switch.	[6M]	
3. Write short notes on	[12M]	
(a) Diode switching times (b) Transistor switching times.		
4. a) Define about storage time and delay time	[6M]	
b) Describe about diode forward recovery time and reverse recovery time.	[6M]	
5. Discuss the operation of collector coupled monostable multivibrator with its output waveforms.		
	[12M]	
6. a) with a neat diagram, explain the operation of fixed bias bistable multivibrator.	[6M]	
b)Design self bias bistable multivibrator with neat sketch.	[6M]	
7. Describe with neat circuit diagram and waveform of collector coupled astable multivibrator.	[12M]	
8. Discuss about the Schmitt trigger circuit with neat diagram.	[12M]	
9. Design a bistable multivibrator with hfe(min) equal to 20 and Vcc=VBB=10v. Assume silicon		
transistors are used.	[12M]	
10. a) write about the operation of diode as a switch.	[6M]	
b) Describe about diode forward recovery time and reverse recovery time	[6M]	

<u>UNIT – III</u> <u>TIME BASE GENERATORS</u>

 a)Explain the basic principles of Miller and Bootstrap time-base generators. b) Give the comparison of both Miller and Bootstrap generation methods. 	[6M] [6M]	
2. With the help of neat circuit diagram and waveforms explain transistor miller time base g	enerator.	
	[12M]	
3. a)Explain the working of Transistor Miller sweep circuit.	[6M]	
b)What are its advantages miller over Bootstrap sweep circuits?	[6M]	
4. Briefly explain the working of a transistor bootstrap time base generator.	[12M]	
5. Derive the following expressions for	[12M]	
a)Sweep speed error b) Displacement error c) Transmission error		
6. With the help of a neat circuit diagram, explain the working of a simple current sweep.	[12M]	
7. a) What are the techniques used to improve the Linearity of current sweeps?	[6M]	
b). Discuss about Transistor Current Time Base Generator.	[6M]	
8. Find the component values of a bootstrap sweep generator, Given $V_{CC} = 18 \text{ V}$, $I_{C}(\text{sat}) = 2 \text{ mA}$ and		
$h_{fe}(min) = 30.$	[12M]	
9. Explain in brief about the Bootstrap sweep circuit?	[12M]	
10 write about the operation of miller sweep circuit?	[12M]	

$\underline{UNIT-IV}$

SAMPLING GATES

1. a)Explain about unidirectional diode sampling gate.	[6M]
b)Write advantages and Disadvantages of sampling gate	[6M]
2. a)Sketch the circuit of simple diode bidirectional gate and describe its	function. [6M]
b)Derive the expressions for the gain and control voltages?	[6M]
3. With the help of neat diagram explain the working of bidirectional san	npling gate using
transistors?	[12M]
4. a) With the help of neat diagram explain the working of a four diode sa	ampling gate. [6M]
b)Derive expressions for its gain (A) and Vmin.	[6M]
5. With the help of neat diagram explain the working of a six diode gate	? [12M
6. a)Draw and explain the reduction of pedestal in a gate circuit	[6M]
b)Give a brief review about applications of the sampling gate?	[6M]
7. a)Discuss the function of a sampling gate used in Sampling Scopes.	[6M]
b) Explain how sampling gate is used in chopping amplifiers.	[6M]
7. a) Compare unidirectional and bidirectional sampling gates.	[6M]
b) Why the sampling gates are called linear gates?	[6M]
10. a) Give a brief review about applications of the sampling gate?	[6M]
b) Illustrate the principle of sampling gates with series and parallel sv	vitches and compare them.
	[6M]

<u>UNIT – V</u> <u>SYNCHRONIZATION AND FREQUENCY DVISION</u>

1. (a) Compare sine wave synchronization with pulse synchronization.	[6M]	
(b) Explain the frequency division with respect to a sweep circuit.	[6M]	
2. Explain the method of pulse synchronization of relaxation devices with example.	[12M]	
3. List out the factors which influence the stability of a relaxation divider, with the help of neat		
waveforms.	[12M]	
4. With the help of neat diagrams and waveforms explain the use of monostable relaxation circuit as		
frequency divider.	[12M]	
5. (a) Explain the synchronization of sweep circuit with symmetric signals.	[6M]	
(b) How a sine wave frequency division is done with a sweep circuit?	[6M]	
6. (a) Construct a neat diagram of OR, AND & NOT gates using diodes.	[6M]	
b) Explain the concepts of Open collector.	[6M]	
7. a)Explain the operation of AND, OR & NOT gates using transistors.	[6M]	
b)Explain the concepts of Tristate outputs	[6M]	
8. Describe about CMOS NAND and NOR gate with neat circuit diagram.	[12M]	
9. a)Write short notes on CMOS logic.	[6M]	
b) Discuss about CMOS inverter.	[6M]	
10. With the help of neat circuit diagram and truth table explain the working of	[12M]	
(i) DTL NAND gate (ii) RTL NAND gate.		
11. With reference to logic gates explain the terms:	[12M]	
(i) Fan out (ii) Noise margin (iii) Propagation delay (iv) Figure of Merit		